Роль нарушений нейротрофического контроля в вертеброневрологии


В статье изложены современные представления, в том числе результаты собственных клинико-экспериментальных исследований, о роли нарушений нейротрофического контроля в формировании невральных и мышечных нарушений при вертеброгенной патологии и других заболеваниях.

The role of the disorders of neurotrophic control in vertebral neurology 

The article describes the modern view, including results of its own clinical and experimental studies on the role of neurotrophic control violations in the formation of neural and muscular disorders in vertebral disease and other diseases. 

В настоящее время существуют различные точки зрения на механизмы развития остеохондроза позвоночника и его неврологических проявлений. Предпочтительнее рассматривать в этом качестве сочетанное влияние различных факторов: микротравматизации, статодинамических нагрузок, инволютивных изменений, наследственного предрасположения, аутоиммунных, сосудистых, обменных и эндокринных нарушений, а также различных инфекционно-токсических воздействий. Какими бы ни были механизмы вертеброгенных заболеваний, наиболее существенным их компонентом является воздействие на нервные элементы, в первую очередь, на нервные стволы. Через них осуществляется и воздействие на мышцы, чье участие в реализации всей клинической картины общеизвестно [8, 11].

В нашей клинике за последние 30 лет установлена и подробно исследована роль нарушений нейротрофического контроля (НТК) в патогенезе невральных и мышечных синдромов как при остеохондрозе позвоночника, так и при других заболеваниях [2, 4, 5, 7, 10].

До настоящего времени, по данным литературы, рассматривались два основных направления исследования нервной трофики применительно к мышечной деятельности: первое из них — вопросы адаптационно-трофического влияния симпатической нервной системы на мышцу; второе направление исследований нервной трофики рассматривает более узкий круг взаимоотношений, существующих между мотонейроном и иннервируемыми им мышечными волокнами. Оно включает вопросы: оказывает ли мотонейрон специфические трофические влияния на мышечное волокно?; опосредованы ли трофические влияния мотонейрона эффектами активности мышцы, или мотонейрон оказывает на мышцу два типа влияний: импульсные, несущие информацию о необходимости и характере мышечного сокращения, и трофические, реализуемые передачей ряда химических соединений от нерва к мышце?


Однако дальнейшее развитие науки поставило под сомнение адаптационно-трофическое влияние симпатической нервной системы на скелетную мускулатуру, и практически предпочтение отдано двигательным нервам. Проблему нервной трофики с конца ХХ века начали рассматривать по второму направлению, т.е. исходя из понимания нейротрофических влияний как конкретных взаимоотношений между мотонейроном и иннервируемыми им мышечными волокнами.

В задачу неврологов входит рассмотрение возможности анализа механизмов нейротрофических влияний у пациентов с вертеброгенной патологией с использованием электронейромиографических, тензометрических, биохимических методов и изучения результатов диагностических биопсий [2, 10].

Правомерна ли вообще постановка такой задачи? Может ли соревноваться невролог, работающий в клинике, с экспериментатором, имеющим возможность проводить тончайшие исследования на животных? При ответе следует, прежде всего, помнить, что проблема нервной трофики всегда была традиционной для клиницистов-неврологов и возникла в недрах клинической патологии. Со времени первых описаний экстравертебральных мышечно-тонических, нейромиодистрофических и нейро-сосудистых синдромов был поставлен и в последующем постоянно дискутировался вопрос: являются ли они в своем происхождении рефлекторного или неврогенного характера? Ответ на этот вопрос можно получить при анализе результатов изучения вертеброгенных компрессионно-невральных и миофасциальных болевых проявлений с помощью современных биохимических, гистоморфологических и электрофизиологических исследований.

Общие сведения о нейротрофическом контроле


Под нервной трофикой понимают нейрональные влияния, необходимые для поддержания нормальной жизнедеятельности иннервируемых структур: нейронов и соматических клеток. Термин «нервная трофика» не вполне точен, так как выделяемые нервными окончаниями и оказывающие трофическое влияние вещества не относятся к питательным субстратам и не обеспечивают питание клетки-мишени. В большей степени они регулируют структурно-метаболические процессы, поэтому в последние годы наибольшее распространение получил термин «нейротрофический контроль».

При выпадении влияния нейрона на клетку-мишень, связанного с перерывом аксона, нарушаются или прекращаются синаптическое проведение и выделение нервными окончаниями нейромедиаторов и нейромодуляторов, реализующих функциональную стимуляцию тканевых структур и влияющих на их метаболизм. Эти нарушения вносят свой вклад в развитие трофических нарушений клеток-мишеней. Тем не менее, под нарушением собственно трофических влияний понимают изменения, связанные с прекращением действия специальных трофических факторов, образующихся в нейронах и иннервируемых структурах — так называемых нейротрофических факторов (НТФ) или трофинов [2, 3, 6, 9, 10].

НТФгруппа веществ белковой природы, обеспечивающих нормальную жизнедеятельность, выживание, рост, развитие и дифференцировку нейронов и определение нейромедиаторной природы нейронов. В отличие от нейромедиагров НТФ не выполняют функцию синаптической передачи сигнала, они также не модулируют связывание рецепторами иейромедиатров, как это делают иейромодуляторы. НТФ осуществляют медленные несинаптические межклеточные взаимодействия и обусловливают долговременные пластические изменения клеток-мишеней. Установлено, что эффекты НТФ связаны преимущественно с их влиянием на процессы транскрипции, трансляции и посттрансляциоиной модификации [3, 6, 9], что сближает их по механизму действия с пептидными и стероидными гормонами.

Таковы общие сведения о НТК. Рассмотрим более подробно частный случай НТК в системе «мотонейрон-мышечное волокно».

Нейротрофический контроль в системе «мотонейрон-мышечное волокно»

В нервно-мышечном синапсе секреция из терминалей ацетилхолина, его взаимодействие со специфическими рецепторами, встроенными в постсинаптическую мембрану, и целый ряд последующих событий приводят к сокращению скелетных мышечных волокон. Весь процесс развивается в течение десятков миллисекунд. Через тот же синапс осуществляется нейротрофический контроль (НТК). О его наличии судят по состоянию параметров, характеризующих возможность выполнения мышечными волокнами контрактильной функции. При отсутствии же нервно-мышечных синапсов в скелетных мышечных волокнах развивается денервационный синдром. Простейший экспериментальный подход для доказательства НТК, реализуемого через синапсы — денервация мышцы путем перерезки нервов.

НТК существенно отличается от собственно синаптической передачи. Время, необходимое для реализации этих процессов, составляет миллисекунды для собственно передачи и последующего сокращения и десятки минут и часы — для развития явлений, свидетельствующих о наличии нейротрофического влияния мотонейронов. Общие эффекты НТК — дифференцировка и поддержание дифференцированного состояния мышечных волокон [3, 9].

Относительно рассматриваемой модели «мотонейрон-скелетное мышечное волокно» под НТК можно понимать долговременное влияние мотонейрона на мышечные волокна, выражающееся в поддержании дифференцированного состояния и осуществляемое вне прямой связи с синаптической передачей и последующей двигательной активностью. Таким образом, для скелетных мышечных волокон инструктирующими клетками, согласно определению, являются элементы нервной системы, а именно мотонейроны.

В этой связи необходимо акцентировать внимание на двух важных обстоятельствах. Во-первых, в системе «мотонейрон-мышечное волокно» существуют двусторонние трофические влияния, т.е факторы, образующиеся в мышечном волокне, участвуют в поддержании жизнеобеспечения и регуляции функции мотонейрона. Во-вторых, следует учитывать, что мотонейрон находится под НТК других нейронов — верхнего мотонейрона вставочных нейронов, а также глиальных клеток, и эти элементы опосредованно, через влияние на мотонейрон, также могут оказывать нейротрофическое влияние на мышечное волокно. Чувствительные нейроны реализуют НТК по отношению к интрафузальным, а не экстрафузальным волокнам. Что касается симпатической иннервации, то существуют довольно убедительные данные об отсутствии прямой синаптической иннервации мышечных волокон у млекопитающих [9]. Типичные феномены, по наличию которых судят о прекращении НТК скелетных мышечных волокон, при длительной симпатической денервации мышц не развиваются [3, 9].

Согласно современным представлениям [2, 3, 6, 9], в реализации трофического влияния нерва на мышцу принимают участие как импульсные, так и неимпульсные механизмы. Существует несколько экспериментальных подходов, которые позволили убедительно показать значение различных механизмов НТК в поддержании дифференцированного состояния скелетных мышц.

  1. Перерезка двигательного нерва, при которой мышцы лишаются как электрических влияний, так и воздействия НТФ со стороны мотонейрона. При этом установлено, что скорость развития денервационных изменений в скелетных мышечных волокнах зависит от уровня перерезки: чем ближе к мышце произведена перерезка, тем быстрее наступают денервационные изменения.
  2. Изучение «вклада» аксонного транспорта в НТК в экспериментах с помощью блокады аксонного транспорта путём аппликаций статокинетиков на двигательный нерв (импульсация по аксону при этом не нарушается).
  3. Исследование роли импульсной активности в реализации НТК в экспериментах с принудительной электрической стимуляцией мышцы с нехарактерной для нее частотой.
  4. Определение влияния так называемых быстрых и медленных мотонейронов на различные мышечные волокна в экспериментах с перекрестной реиннервацией, когда к мышце подшивали «чужой» для нее нерв.

Рассмотрим отдельные механизмы НТК в системе «мотонейрон-скелетное мышечное волокно». В основе неимпульсного механизма НТК лежит обмен НТФ между нейроном и иннервируемым мышечным волокном. Как известно, аксон обеспечивает не только проведение возбуждения, но и транспорт различных веществ из тела нейрона в нервное окончание и в обратном направлении. Выделяют три вида аксонного транспорта:

1. Быстрый антероградный транспорт. Его скорость составляет приблизительно 400 мм/сут. Быстрым аксонным транспортом переносятся преимущественно вещества и структуры, необходимые для синаптической деятельности: митохондрии, пептидные медиаторы и нейромодуляторы, ферменты, необходимые для синтеза медиатора (в частности, ацетилхолинтрансфераза), а также липидные и белковые компоненты мембраны.

2. Медленный антероградный транспорт, его скорость составляет 1-5 мм/сут. Он обеспечивает перенос компонентов цитоскелета (в частности, субъединицы микротрубочек и нейрофиламентов), некоторых ферментов, необходимых для промежуточного метаболизма в аксоне, а также, вероятно, и большинства НТФ.

3. Быстрый ретроградный транспорт. Его скорость составляет 200-300 мм/сут. Таким образом, с клетки мышечного волокна поступают поврежденные компоненты мембран и органелл, а также абсорбированные экзогенные вещества, в том числе и трофические факторы.

Аксональный транспорт обеспечивают компоненты цитоскелета аксона: микротрубочки, микрофиламенты, нейрофиламенты. Быстрый антероградный и ретроградный транспорт — энергозависимый процесс, для которого необходимо присутствие АТФ и ионов Са2+. Перенос веществ осуществляется в везикулах, которые поступательно движутся вдоль микротрубочек благодаря функции кинезинового и динеинового молекулярных моторов: первый обеспечивает движение от тела клетки (т.е. антероградный транспорт), второй – в обратном направлении (т.е. ретроградный транспорт). Механизмы, обеспечивающие медленный антероградный транспорт, пока не изучены, предполагают также участие молекулярных моторов

Вещества, разрушающие микротрубочки и нейрофиламенты (в частности, колхицин, винбластин и др.), недостаток АТФ и метаболические яды, вызывающие дефицит энергии, нарушают аксональный транспорт. Аксональный транспорт нарушается при поражении аксонов вследствие дефицита витаминов В1 и В6, отравления солями тяжелых металлов, воздействия некоторых лекарственных средств, а также при сахарном диабете и сдавлении нервов. Кроме того, аксональный транспорт нарушается при первичном поражении мотонейрона и недостатке НТФ, в том числе вырабатываемых иннервируемыми клетками.

Нарушения НТК представляют собой один из важнейших патогенетических факторов многих заболеваний центральной и периферической нервной системы. Общеизвестна ведущая роль расстройства НТК в патогенезе периферических нейропатий:

1. Мутации в генах НТФ или рецепторов к ним обусловливают развитие ряда наследственных нейропатий. В частности, мутации в гене Trk типа А обусловливают развитие некоторых форм наследственной сенсорно-вегетативной нейропатии (тип IV); нарушения экспрессии фактора роста нервов рассматривают как возможную причину семейной дизавтономии (синдрома Райли-Дея) и т.д.

2. Нарушения синтеза и транспорта фактора роста нервов — важный патогенетический фактор диабетической полинейропатии, а нарушения синтеза инсулиноподобного фактора роста-1 могут обусловливать повышенную чувствительность нервов к различным неблагоприятным факторам у больных сахарным диабетом.

3. Наконец, нарушение аксонального транспорта и, следовательно, НТК составляет основу многих токсических и лекарственных нейропатий.

Приведенные выше примеры демонстрируют случаи первичного нарушения синтеза или транспорта НТФ. Тем не менее, следует учитывать, что при любых поражениях нервов наблюдаются вторичные нарушения аксонального транспорта вследствие отека, сдавления аксонов или метаболических нарушений в них, поэтому расстройство НТК — неотъемлемая патогенетическая составляющая нейропатий любой этиологии.

В настоящее время получены сведения о роли нарушений аксоплазматического транспорта при заболеваниях периферического двигательного нейрона у человека и других нейродегенеративных заболеваниях. Но до 90-х годов XX века не было никаких данных о роли нарушения НТК в формировании невральных и мышечных синдромов остеохондроза позвоночника.

Основные механизмы нарушения нейротрофического контроля при остеохондрозе позвоночника

Существует два основных механизма нарушения НТК при остеохондрозе позвоночника. Во-первых, в условиях нарушения нормальных взаимоотношений между корешком и диском возможно изолированное нарушение аксоплазматического транспорта при сохранной передаче импульсов. Согласно концепции двойного сдавления, сформулированной Upton и McComas (1973), воздействие на корешки может нарушать аксональный транспорт, что вследствие нарушения метаболизма в аксоне обусловливает повышенную чувствительность нервов к различным неблагоприятным факторам, в частности к травматическим воздействиям. Естественно предположить, что в результате диско-радикулярного конфликта происходит изолированное нарушение аксоплазмагического транспорта при сохранной передаче импульсов [8, 10, 11] вследствие субклинического воздействия на корешки. Данного воздействия недостаточно для развития клинически значимой радикулопатии, но нарушения аксонального транспорта способствуют не только повышенной ранимости нервов, но и формированию экстравертебральных мышечных проявлений в результате нарушения и выпадения НТК.

Во-вторых, возможен также рефлекторный механизм нарушения нейротрофического контроля по двигательному нерву в результате изменения функционального состояния мотонейронов под влиянием патологической импульсации из поврежденного позвоночно-двигательного сегмента из участков нейромиофиброза при постуральных и викарных перегрузках.

Экспериментальный подход в обосновании рефлекторных нарушений НТК при остеохондрозе позвоночника

С целью уточнения роли нарушения НТК (при интактности импульсной проводимости) в формировании триггерных зон миофиброза в нашей клинике проведены экспериментальные исследования на животных, в ходе которых убедительно продемонстрирована идентичность клинических, морфологических, биохимических и нейрофизиологических изменений как при прямом, так и рефлекторном нарушении аксонального транспорта. В качестве экспериментальной модели выбран метод аппликации цитостатического вещества колхицина на корешок L5, а также метод рефлекторного воздействия на аксоплазматический транспорт. Колхицин в определенной концентрации, воздействуя на корешок, нарушает проводимость аксоплазматического тока и, сохраняя импульсную проводимость, моделирует некоторые возможные варианты экстравертебральной патологии с преимущественным нарушением аксонного тока [10].

У экспериментальных животных создавались очаги поражения 1) в корешковом нерве L5, 2) межпозвоночном диске и 3) икроножной мышце. Такая локализация очагов поражения была необходима для выяснения рефлекторного воздействия на аксоплазматический ток с дальнейшим нарушением нейротрофического неимпульсного контроля. Мы учитывали, что у пациентов с сочетанными невральными и миодистрофическими нарушениями поясничного остеохондроза обычно присутствует несколько очагов поражения (по крайней мере, не меньше двух: вертебрального и экстравертебрального) и, моделируя эту ситуацию у экспериментальных животных, формировали различные очаги поражения.

В зависимости от вида поражения все животные были разделены на группы: 1) с аппликацией колхицина на корешок L5; 2) с поврежденным диском; 3) с аппликацией колхицина и пораженной икроножной мышцей; 4) с повреждением мышцы и диска; 5) контрольные животные.

Наши исследования подтвердили известный факт, что цитостатик (колхицин), вызывая блокаду аксоплазматического транспорта (при сохранной импульсной проводимости), приводит к снятию трофического контроля. Подобным оказался эффект рефлекторного воздействия на мышцу в том случае, когда кроме раздражения рецепторов межпозвоночного диска животного выполнялось локальное повреждение на периферии, проявляющееся в изменении метаболизма мышц: 1) мышца теряет присущий ей уровень дифференцировки, о чем свидетельствует появление участков перимизия, воспалительных клеток вокруг некротизированных волокон как I, так и II типа; 2) происходит сдвиг в гистохимическом типовом составе — замедление «быстрых» и убыстрение «медленных» мышечных волокон, т.е. обнаруживаются признаки дедифференциации; 3) происходит изменение изоферментного состава спектра лактатдегидрогеназы (увеличение активности быстромигрирующих в «быстрой» мышце, а в «медленной» — тенденция к возрастанию активности изоформы ЛДГ2); 4) отмечается изменение электрофизиологических параметров за счет перестройки на различных уровнях регуляции мышечного сокращения, т.е. характеристика целой мышцы зависит от стадий денервационно-реиннервационного процесса — на ранних стадиях обнаруживается сдвиг гистограмм влево, уменьшение силы и скоростных характеристик одиночного сокращения, а на поздних этапах происходит их возрастание и сдвиг гистограмм вправо (признаки укрупнения территорий двигательных единиц (ДЕ) и увеличение количества мышечных волокон в них). Указанные изменения, наблюдаемые в мышце, носят характер денервационноподобных.

Клинически у животных с аппликацией колхицина на спинальный нерв, а также при повреждении мышцы и диска в интактных мышцах, были обнаружены болезненные узелки — так называемые участки миофиброза. По всей вероятности, механизм формирования миофиброза обусловлен нарушением нейротрофического неимпульсного контроля в результате блокады аксоплазматического транспорта. Очевидно, формирование миофиброза является вторичным, как результат выключения трофического влияния нервных волокон, обеспечивающего поддержание дифференцированного состояния скелетных мышечных волокон.

Мы убедились, что признаки денервационно-реинервационного процесса обнаружены не только в эксперименте, но и также и у пациентов с рефлекторными миодистрофическими синдромами. Можно полагать, что причиной поражения ишиокруральных мышц (передней большеберцовой, медиальной порции икроножной) является «скрытая», или субклиническая стадия компрессия корешков L5 и S1, ведущей к развитию денервационно-реинервационного процесса и реорганизации двигательных единиц в мышце. Очевидно, выявляемая перестройка структуры двигательных единиц происходит не только вследствие частичной денервации мышцы, а также за счет механизмов, аналогичных тем, которые обеспечивают «транснейрональное» включение спрутинга в мышцах с сохранной иннервацией [12]. По всей вероятности, они включаются при ирритации синувертебрального возвратного нерва Люшка, в процессе поражения позвоночно-двигательного сегмента и формирования неадекватного двигательного стереотипа.

Заключение

Таким образом, проведенные нами исследования показали, что при нарушении долговременного нейротрофического влияния, реализуемого аксонным транспортом, как у экспериментальных животных (наложение колхицина или рефлекторное воздействие на аксональный транспорт), так и у пациентов с сочетанными компрессионно-невральными проявлениями при вертеброгенной патологии происходит следующее: уменьшаются тетанический индекс и площадь поперечного сечения, замедляются «быстрые» и убыстряются «медленные» мышечные волокна. Это признаки дедифференциации. Выключение же импульсной активности наряду с атрофией мышечных волокон вызывает увеличение тетанического индекса, сопровождающееся удлинением времени сокращения. При сравнении полученных данных установлено сходство механомиографических, биохимических и морфогистохимических сдвигов в эксперименте и при обсуждаемой патологии человека. Исключение составляют волокна-мишени и преимущественная атрофия волокон II типа. Эти признаки отсутствовали у животных всех групп; они, по-видимому, непатогномоничны для нарушения нейротрофического неимпульсного контроля. Общность данных тенденций указывает на определенную роль нарушения аксонного транспорта в формировании миофасциальных триггерных зон. Это нарушение, как следует из результатов экспериментальных исследований, возможно и без пересечения корешка, т.е. в результате рефлекторного воздействия на аксонный транспорт.

Вероятно, формирование миофасциальных триггерных зон при различных заболеваниях имеет много общих патогенетических механизмов. Начальные же звенья патологического процесса различны. У больных с вертеброгенными поражениями периферической нервной системы первоначально, видимо, происходят изменения функциональной морфологии двигательных единиц. Эти изменения вызывают денервационно-реиннервационные изменения и нарушения нейротрофического неимпульсного контроля.

Результаты наших исследований позволяют предположить, что в основе вертеброгенных неврально-миодистрофических поражений лежат изменения периферической нервной системы, заключающиеся в нарушении функций и дегенерации аксональных нейрофиламентов и микротрубочек. Эти первичные изменения могут быть вызваны воздействием цитостатика на корешок, а при наличии периферического очага эти изменения могут происходить и по рефлекторному механизму. При этом на периферии, в мышцах возникают вторично нейродистрофические нарушения из-за изменений трофических мотонейрональных влияний.

С внедрением современной теории нейротрофического контроля в клиническую практику получило развитие совершенно новое направление в изучении механизмов формирования мышечных нарушений при различных заболеваниях. Как известно, посттравматические иммобилизационные контрактуры являются серьезным осложнением при лечении травм опорно-двигательного аппарата. В исследованиях нашего сотрудника Д.Л. Галямова [4] было доказано, что спровоцированные травмой изменения в нервной системе приводят к рефлекторному нарушению синтеза нейротрофических факторов, в сегментарных мотонейронах, вследствие чего формируется миогенный компонент указанных контрактур. Есть основание полагать, что преобладание денервационных изменений в мышцах, особенно при длительных сроках бездействия, обусловлено тормозящим влиянием супраспинальных структур не только на сегментарные мотонейроны, но и на чувствительные. Кроме того, нарушается отлаженный механизм супраспинально-сегментарных взаимодействий, что проявляется в форме фасцикуляциоподобного феномена. Сущность его заключается в том, что торможение активности двигательной единицы у пациента, которую он произвольно активировал, происходит с трудом.

Снижение нейротрофической потенции мотонейронов подтверждается гистологически обнаруживаемыми изменениями нисслевского вещества, а также изменением содержания РНК в соме клетки. Этот факт показывает, что мотонейрон является клеткой-мишенью для трофического воздействия других групп нейронов.

Грубые денервационные изменения, гипотрофия мышц обычно сочетаются с гипотонией. В наших исследованиях у больных наблюдалось повышение тургора мягких тканей. Этот факт принято объяснять развитием миофиброза, но при банальной постельной гиподинамии (гипокинезии) также отмечается увеличение доли соединительной ткани при отсутствии гипертонии. Для объяснения данного противоречия целесообразно использовать феномен Гинецинского-Орбели и тономоторный феномен. Известно, что при перитоните, мышцы брюшного пресса формируют защитный дефанс. Способность мышц в течение длительного времени противодействовать утомлению объясняется параллельной гиперактивностью симпатической нервной системы, оказывающей адаптивное влияние. Одновременная стимуляция двигательного и симпатического нервов усиливает ресинтез АТФ, необходимый для работы актин-миозинового комплекса. Это оказывается возможным, вероятно, благодаря повышенному гидролизу креатинфосфата, так как показано, что в первые сутки после травмы в мышцах значительно снижается концентрация креатинфосфата, и, кроме того, АТФ. В условиях нарушения нейротрофического обеспечения мышечных волокон и перехода с окислительного декарбоксилирования глюкозы на гликолитический путь концентрация АТФ может стать ниже критической, и разовьется так называемое трупное окоченение.

Нам представляется возможным такой путь формирования гипертонуса иммобилизованных мышц. Вызванный болевыми ощущениями мышечный спазм трансформируется в более устойчивое состояние, и поэтому ни наркоз, ни новокаиновые блокады не восстанавливают полного объема движений.

В результате установления миогенного компонента посттравматических и иммобилизационных контрактур была изменена стратегия лечебно-реабилитационных мероприятий [1]. Так, применение электростимуляции в сочетании с изометрической гимнастикой на иммобилизационном этапе лечения травм длинных трубчатых костей позволяет снизить степень выраженности контрактуры в сравнении с контрольной группой и сократить сроки лечения на две недели как в общем, так и в стационаре. В нашей лаборатории М.Б. Гарифьяновой [5] была впервые создана экспериментальная модель вторичных контрактур мимических мышц посредством передавливания нерва и аппликации колхицина. Создание моделей, наиболее близких к клиническим условиям, позволило установить влияние нейротрофического контроля на формирование синдромов вторичных контрактур мимических мышц. В результате наших исследований стало возможным разработать комплексный клинико-электрофизиологический и гистохимический алгоритм для ранней диагностики вторичной контрактуры, а также предложить лечебно-реабилитационные мероприятия.

Усилиями Ф.И. Девликамовой [7] многие миофасциальные болевые синдромы были не только изучены и описаны, но и осмыслены как нарушения управления двигательными актами и интимными нейрофизиологическими и морфологическими процессами в поперечно-полосатой мускулатуре.

Клинические идеи в вертеброневрологии и изучении роли нарушения нейротрофического контроля в патогенезе невральных и миофасциальных болевых синдромов позволили углубить представления об обратной связи из опорно-двигательного аппарата в адрес центра, о взаимодействии анализаторов. Это обеспечило новые революционные подходы в лечении пациентов с вертеброгенной патологией.

 

 

Ф.А. Хабиров

Казанская государственная медицинская академия

Хабиров Фарит Ахатович — доктор медицинских наук, профессор, заведующий кафедрой неврологии и мануальной терапии КГМА

 

 

Литература:

1. Айдаров, В.И. Физическая реабилитация больных с иммобилизационными контрактурами и их раннее предупреждение: автореф. дис. … кандидата мед. наук / В.И. Айдаров. — Казань, 1997. — 18 с.

2. Богданов, Э.И. Общие закономерности изменений сократительных свойств при патологии нервной регуляции скелетных мышц: автореф. дис. … д-ра мед. наук / Э.И.Богданов. — Казань, 1989. — 24 с.

3. Волков, Е.М. Нейротрофический контроль функциональных свойств поверхностной мембраны мышечного волокна / Волков, Е.М., Г.И. Полетаев // Механизмы нейрональной регуляции мышечной функции. — Л.: Наука, 1988. — С. 5-26.

4. Галямов, Д.Л. Нарушение нейротрофического контроля мышц при посттравматических иммобилизационных контрактурах: автореф. … канд. мед. наук / Д.Л. Галямов. — Казань, 1995. — 14 с.

5. Гарифьянова, М.Б. Вторичная контрактура мимической контратуры (клинические нейрофизиологические и морфогистохимические аспекты. Патогенез. Лечение): автореф. дис. … д-ра мед.наук / М.Б. Гарифьянова. — Казань, 1997. — 28 с.

6. Гехт, Б.М. Трофический потенциал мотонейрона и проблема компенсаторной иннервации в патологии / Б.М. Гехт, Л.Ф. Касаткина, А.Г. Санадзе, И.А. Строков // Механизмы нейрональной регуляции мышечной функции. — Л.: Медицина, 1988. — С. 53-78.

7. Девликамова, Ф.И. Морфофункциональная организация скелетных мышц у больных с миофасциальным болевым синдромом (клинико-патофизиологические исследования): автореф. дис. … д-ра мед. наук / Ф.И. Девликамова. — Казань, 2004. — 25 с.

8. Попелянский, Я.Ю. Ортопедическая неврология (вертеброневрология): руководство для врачей / Я.Ю. Попелянский. — Казань, 1997. — Т. 1— 554 с.

9. Улумбеков, Э.Г. Нейротрофический контроль фазных мышечных волокон / Э.Г. Улумбеков, Н.П. Резвяк // Нервный контроль структуно-функциональной организации мышцы. — Л.: Наука, 1980. — С. 84-104.

10. Хабиров, Ф.А. Неврально-мышечные трофические нарушения при поясничном остеохондрозе: автореф. дис. д-ра мед.наук / Ф.А. Хабиров. — М., 1991. — 28 с.

11. Хабиров, Ф.А. Руководство по клинической неврологии позвоночника / Ф.А. Хабиров. — Казань: Медицина. — 2006. — 518 с.

12. Rotshen-Ker., S. The trans neuronal induction of sprouting and synapse formation in  intact mouse muscles / S. Rotshen-Ker., M. Tal // J. Physiol., 1985. — Vol. 360. — P. 387-396.

13.Upton, A.R. The double crish in nerve entrapment Syndromes / A.R. Upton, A.J. Mc Comas // Lancet. — 1973. — Vol. 2, № 7826. — P. 359-362.